Deep Learning-Based Compressed Sensing for Mobile Device-Derived Sensor Data

Liqiang Xu, Yuuki Nishiyama and Kaoru Sezaki

東京大学 生産技術研究所 瀬崎研究室

		Background
 Massive data accumulate on smartphones and uploaded to severs daily Traditional data compression methods are time- 	Accelerometer sensor Com	upload

Purpose: Use deep compressed sensing method to compress sensor data.

Methods

Unlike traditional compressed sensing methods, we designed a network named Mob-ISTA-1DNet to replace the measurement and sparse matrices.

Figure: The architecture of Mob-ISTA-1DNet

Experiments and results

We collected acceleration data by 5 Hz from 100 users with our AWARE framework-based iOS mobile sensing application. In this experiment, we obtained 10,000 signal segments for every user from raw acceleration data by the sliding window (10 seconds) strategy.

Our preliminary experiments found that MSE is not so suitable for acceleration data reconstruction. Meanwhile, the relative error and correlation coefficient are often used as evaluation metrics for compression and reconstruction work; hence, we combined MSE, relative error and correlation coefficient to design a loss function.

$$\begin{aligned} \mathcal{L} = & w\ell + p\zeta + q\gamma \\ = & w\frac{1}{n} \sum_{i=1}^{N} (x_i - a_i)^2 + p\frac{1}{n} \sum \|\psi\psi^T x_i - x_i\|_2^2 + \\ & q(1 - \frac{1}{n} \sum \frac{\sum_{i=1}^{N} (x_i - \tilde{x})(a_i - \tilde{a})}{\sqrt{\sum_{i=1}^{N} (x_i - \tilde{x})^2} \sqrt{\sum_{i=1}^{N} (a_i - \tilde{a})^2}}) \end{aligned}$$

SP		0.02	0.03	0.22	0.31
ISTA		0.05	0.06	0.40	0.43
ISTA-1DI	Net	0.02	0.03	0.20	0.22
Mob-ISTA-	IDNet	0.01	0.02	0.15	0.18
0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75 -1.00 0 0 0 0 0 0 1000 1000 1000 1000 1000 1000 1000 1000 1000	D.6 D.4 D.2 D.0 D.2 D.4 D.2 D.4 D.6 D.4 D.4 D.2 D.4 D.2 D.4 D.2 D.4 D.2 D.4 D.2 D.4 D.2 D.4 D.2 D.4 D.2 D.4 D.2 D.4 D.2 D.4 D.2 D.4 D.2 D.4 D.2 D.4 D.2 D.4 D.2 D.4 D.2 D.4 D.4 D.4 D.4 D.4 D.4 D.4 D.4	00 150 200	original reconstruct	$ \begin{array}{c} 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.0 \\ -0.1 \\ -0.2 \\ -0.3 \\ 0 \\ 10 \\ 20 \\ \end{array} $	- origina recons
7min	1min		15s		
Figure: Examples	s of con	npariso	n and	reconstruc	ction result

Conclusion

- Designed a loss function that works for both sensor data compression and reconstruction
- Implement compression and reconstruction on sensor data by designing our model named Mob-ISTA-1DNet.
- Organizing a collection experiment on smartwatch;
- Using federated learning to address the high variability across different users;

On-going

• Exploring the combination of various sensor data to enhance compression performance

